
On Redundant Multipath
Operating System Support for

Wireless Mesh Networks
 Presented by Raluca Musaloiu-E.

Johns Hopkins University

Yair
Amir

Claudiu
Danilov

Michael
Kaplan

That’s
Me

Nilo
Rivera

SMesh story

Redundant multipath routing is an essential service for
increasing reliability in wireless mesh networks.

Redundant multipath is not natively
supported by current operating systems.

User space
Kernel space

Spines Spines

Spines

Spines

 A cost effective wireless mesh deployment
requires low-cost mesh nodes.

0

1.1

2.2

3.3

4.4

5.5

6.6

7.7

8.8

9.9

11.0

1 hop 2 hops 3 hops 4 hops 5 hops

2 2 2 2 2

TCP Throughput (Mbps)

Overlay

CPU limitation!

We present a minimally invasive mechanism to
support redundant multipath routing in kernel-space.

Control

Data routing

User space

Kernel space

We present a minimally invasive mechanism to
support redundant multipath routing in kernel-space.

Control

Data routing

User space

Kernel space
Module for
multipath

0

1.1

2.2

3.3

4.4

5.5

6.6

7.7

8.8

9.9

11.0

1 hop 2 hops 3 hops 4 hops 5 hops

10

5

3
3

22 2 2 2 2

TCP Throughput (Mbps)

Overlay Redundat Multipath

Architecture

To route,
consider

entry point,
in addition to
destination

address.

1 2

3

4
5

6

7

Source Destination Next-Hop(s)
Node 1 client 1 6
 … …
Node 2 client 1 6, 7
 … …

Client 1

Node 5 routing rules

Fig. 1. The routes to a mobile client (multipath routing). Fig. 2. Architecture.

an overlay network to increase the reliability of the end-
to-end path. End-System-Multicast [14] and Spines [3] also
route through an application router to support overlay multicast
without infrastructure support.

Other work has looked into operating system support for
wireless ad-hoc routing protocols. Chakeres and Belding
showed in [9] an in-kernel design and implementation of the
ad-hoc AODV protocol using Netfilter modules, and showed
performance improvement compared to user-level ad-hoc pro-
tocols. Kawadia et al. [16] proposed a complete architecture
to support ad-hoc protocols in-kernel and a generic ad-hoc
support library for user-level programs to control different ad-
hoc protocols.

SMesh [4] recently showed how overlay multicast can be
used in wireless mesh networks to provide fast handoff to
unmodified 802.11 clients that connect transparently using
DHCP. SMesh allows multiple access points to service the
client during handoff, as it works in ad-hoc mode. In SMesh,
packets sent by the mobile client are diverted from the kernel
to the Spines user-level overlay router. Multicast trees are
calculated in a way similar to that of MOSPF [17]. SMesh
encapsulates client packets and sends them through the overlay
network to the access points serving the destination. Once the
packets are received by the destination’s access points, SMesh
strips the overlay headers and forwards the original packet to
the mobile client using a raw socket.

We used the SMesh wireless mesh system as a testbed to
implement and evaluate the benefits and drawbacks of the
approach presented in this paper.

III. OS SUPPORT FOR REDUNDANT MULTIPATH ROUTING

User-level overlay routing allows users to implement any
protocol without requiring any special support from the kernel.
The SMesh system uses this approach to implement redundant
multipath, essential for achieving a seamless handoff. While
very convenient, routing the entire traffic through user space
becomes problematic for low-cost wireless routers which have
limited processing power. It is widely known that forwarding
packets through user space results in higher CPU utilization
when compared to kernel space. The overhead can be at-
tributed to two primary factors: memory copies and context
switches. Each routing node must copy the packets from kernel

space to user space in order to determine the next hop. After a
routing decision is made, the packet must be returned to kernel
space where it is sent on the network. That is, the user-kernel
boundary must be crossed a minimum of two times per hop.

We describe next a mechanism that achieves efficient re-
dundant multipath routing in kernel space. The idea behind it
is simple: each node maintains multiple kernel routing tables,
one for each node in the mesh network, with route entries
set according to the multicast trees determined by our routing
protocol.

A. Architecture

In wireless mesh networks, it is possible for packets to
start flowing in the mesh from different sources. Several
Internet gateways may coexist in multi-homed wireless mesh
networks [5], any of which may need to forward packets to
the client. Also, since clients may communicate with other
clients in the mesh network, virtually every access point is
capable of being the source of packets in the mesh. To provide
optimal redundant multipath routing in these networks, each
node must consider the mesh source and the destination of
each packet in order to determine the appropriate forwarding
rule for that packet. Inside the mesh network, this can be
viewed as a multicast routing problem (multi-source multi-
destination multicast routing)1. Figure 1 shows how packets
are forwarded to the mobile client from two different sources
(node 1 and node 2)2. Note that node 5 must forward the
packets differently depending on the source of the packet.

Based on the description above, it is clear that a node must
decide what are the next hops for a packet based on the mesh
entry-point as well as the destination address of the packet.
However, the entry-point cannot be determined by just looking
at the packet destined to the client (the source address in
the IP header is not the address of a mesh entry-point, but
the actual address of the sender, which can be another mesh

1Tunneling the unicast packet in an IP-multicast tunnel is not a viable
solution as it suffers from lower reliability due to the lack of 802.11 link-
layer retransmissions. An alternative is to use IP-multicast tunnels, with an
additional unicast tunnel on each hop, but this approach incurs additional
space in the packet as well as processing overhead on each node.

2Note that these mesh nodes are not the actual sources. Rather, they are the
nodes that first received the packet in the mesh network, either from Internet
or from clients connected to them.

Node 5We use
multiple
 routing
tables.

1 2

3

4
5

6

7

Source Destination Next-Hop(s)
Node 1 client 1 6
 … …
Node 2 client 1 6, 7
 … …

Client 1

Node 5 routing rules

Fig. 1. The routes to a mobile client (multipath routing). Fig. 2. Architecture.

an overlay network to increase the reliability of the end-
to-end path. End-System-Multicast [14] and Spines [3] also
route through an application router to support overlay multicast
without infrastructure support.

Other work has looked into operating system support for
wireless ad-hoc routing protocols. Chakeres and Belding
showed in [9] an in-kernel design and implementation of the
ad-hoc AODV protocol using Netfilter modules, and showed
performance improvement compared to user-level ad-hoc pro-
tocols. Kawadia et al. [16] proposed a complete architecture
to support ad-hoc protocols in-kernel and a generic ad-hoc
support library for user-level programs to control different ad-
hoc protocols.

SMesh [4] recently showed how overlay multicast can be
used in wireless mesh networks to provide fast handoff to
unmodified 802.11 clients that connect transparently using
DHCP. SMesh allows multiple access points to service the
client during handoff, as it works in ad-hoc mode. In SMesh,
packets sent by the mobile client are diverted from the kernel
to the Spines user-level overlay router. Multicast trees are
calculated in a way similar to that of MOSPF [17]. SMesh
encapsulates client packets and sends them through the overlay
network to the access points serving the destination. Once the
packets are received by the destination’s access points, SMesh
strips the overlay headers and forwards the original packet to
the mobile client using a raw socket.

We used the SMesh wireless mesh system as a testbed to
implement and evaluate the benefits and drawbacks of the
approach presented in this paper.

III. OS SUPPORT FOR REDUNDANT MULTIPATH ROUTING

User-level overlay routing allows users to implement any
protocol without requiring any special support from the kernel.
The SMesh system uses this approach to implement redundant
multipath, essential for achieving a seamless handoff. While
very convenient, routing the entire traffic through user space
becomes problematic for low-cost wireless routers which have
limited processing power. It is widely known that forwarding
packets through user space results in higher CPU utilization
when compared to kernel space. The overhead can be at-
tributed to two primary factors: memory copies and context
switches. Each routing node must copy the packets from kernel

space to user space in order to determine the next hop. After a
routing decision is made, the packet must be returned to kernel
space where it is sent on the network. That is, the user-kernel
boundary must be crossed a minimum of two times per hop.

We describe next a mechanism that achieves efficient re-
dundant multipath routing in kernel space. The idea behind it
is simple: each node maintains multiple kernel routing tables,
one for each node in the mesh network, with route entries
set according to the multicast trees determined by our routing
protocol.

A. Architecture

In wireless mesh networks, it is possible for packets to
start flowing in the mesh from different sources. Several
Internet gateways may coexist in multi-homed wireless mesh
networks [5], any of which may need to forward packets to
the client. Also, since clients may communicate with other
clients in the mesh network, virtually every access point is
capable of being the source of packets in the mesh. To provide
optimal redundant multipath routing in these networks, each
node must consider the mesh source and the destination of
each packet in order to determine the appropriate forwarding
rule for that packet. Inside the mesh network, this can be
viewed as a multicast routing problem (multi-source multi-
destination multicast routing)1. Figure 1 shows how packets
are forwarded to the mobile client from two different sources
(node 1 and node 2)2. Note that node 5 must forward the
packets differently depending on the source of the packet.

Based on the description above, it is clear that a node must
decide what are the next hops for a packet based on the mesh
entry-point as well as the destination address of the packet.
However, the entry-point cannot be determined by just looking
at the packet destined to the client (the source address in
the IP header is not the address of a mesh entry-point, but
the actual address of the sender, which can be another mesh

1Tunneling the unicast packet in an IP-multicast tunnel is not a viable
solution as it suffers from lower reliability due to the lack of 802.11 link-
layer retransmissions. An alternative is to use IP-multicast tunnels, with an
additional unicast tunnel on each hop, but this approach incurs additional
space in the packet as well as processing overhead on each node.

2Note that these mesh nodes are not the actual sources. Rather, they are the
nodes that first received the packet in the mesh network, either from Internet
or from clients connected to them.

Node 3

Node 2

Node 1

client 1
client 2
....

Node 5Each route may
have

multiple
next-hops.

Node 1

Destination Next-hops
client 1 6, 7
client 2 3

... ...

1 2

3

4
5

6

7

Source Destination Next-Hop(s)
Node 1 client 1 6
 … …
Node 2 client 1 6, 7
 … …

Client 1

Node 5 routing rules

Fig. 1. The routes to a mobile client (multipath routing). Fig. 2. Architecture.

an overlay network to increase the reliability of the end-
to-end path. End-System-Multicast [14] and Spines [3] also
route through an application router to support overlay multicast
without infrastructure support.

Other work has looked into operating system support for
wireless ad-hoc routing protocols. Chakeres and Belding
showed in [9] an in-kernel design and implementation of the
ad-hoc AODV protocol using Netfilter modules, and showed
performance improvement compared to user-level ad-hoc pro-
tocols. Kawadia et al. [16] proposed a complete architecture
to support ad-hoc protocols in-kernel and a generic ad-hoc
support library for user-level programs to control different ad-
hoc protocols.

SMesh [4] recently showed how overlay multicast can be
used in wireless mesh networks to provide fast handoff to
unmodified 802.11 clients that connect transparently using
DHCP. SMesh allows multiple access points to service the
client during handoff, as it works in ad-hoc mode. In SMesh,
packets sent by the mobile client are diverted from the kernel
to the Spines user-level overlay router. Multicast trees are
calculated in a way similar to that of MOSPF [17]. SMesh
encapsulates client packets and sends them through the overlay
network to the access points serving the destination. Once the
packets are received by the destination’s access points, SMesh
strips the overlay headers and forwards the original packet to
the mobile client using a raw socket.

We used the SMesh wireless mesh system as a testbed to
implement and evaluate the benefits and drawbacks of the
approach presented in this paper.

III. OS SUPPORT FOR REDUNDANT MULTIPATH ROUTING

User-level overlay routing allows users to implement any
protocol without requiring any special support from the kernel.
The SMesh system uses this approach to implement redundant
multipath, essential for achieving a seamless handoff. While
very convenient, routing the entire traffic through user space
becomes problematic for low-cost wireless routers which have
limited processing power. It is widely known that forwarding
packets through user space results in higher CPU utilization
when compared to kernel space. The overhead can be at-
tributed to two primary factors: memory copies and context
switches. Each routing node must copy the packets from kernel

space to user space in order to determine the next hop. After a
routing decision is made, the packet must be returned to kernel
space where it is sent on the network. That is, the user-kernel
boundary must be crossed a minimum of two times per hop.

We describe next a mechanism that achieves efficient re-
dundant multipath routing in kernel space. The idea behind it
is simple: each node maintains multiple kernel routing tables,
one for each node in the mesh network, with route entries
set according to the multicast trees determined by our routing
protocol.

A. Architecture

In wireless mesh networks, it is possible for packets to
start flowing in the mesh from different sources. Several
Internet gateways may coexist in multi-homed wireless mesh
networks [5], any of which may need to forward packets to
the client. Also, since clients may communicate with other
clients in the mesh network, virtually every access point is
capable of being the source of packets in the mesh. To provide
optimal redundant multipath routing in these networks, each
node must consider the mesh source and the destination of
each packet in order to determine the appropriate forwarding
rule for that packet. Inside the mesh network, this can be
viewed as a multicast routing problem (multi-source multi-
destination multicast routing)1. Figure 1 shows how packets
are forwarded to the mobile client from two different sources
(node 1 and node 2)2. Note that node 5 must forward the
packets differently depending on the source of the packet.

Based on the description above, it is clear that a node must
decide what are the next hops for a packet based on the mesh
entry-point as well as the destination address of the packet.
However, the entry-point cannot be determined by just looking
at the packet destined to the client (the source address in
the IP header is not the address of a mesh entry-point, but
the actual address of the sender, which can be another mesh

1Tunneling the unicast packet in an IP-multicast tunnel is not a viable
solution as it suffers from lower reliability due to the lack of 802.11 link-
layer retransmissions. An alternative is to use IP-multicast tunnels, with an
additional unicast tunnel on each hop, but this approach incurs additional
space in the packet as well as processing overhead on each node.

2Note that these mesh nodes are not the actual sources. Rather, they are the
nodes that first received the packet in the mesh network, either from Internet
or from clients connected to them.

1 2

3

4
5

6

7

Source Destination Next-Hop(s)
Node 1 client 1 6
 … …
Node 2 client 1 6, 7
 … …

Client 1

Node 5 routing rules

Fig. 1. The routes to a mobile client (multipath routing). Fig. 2. Architecture.

an overlay network to increase the reliability of the end-
to-end path. End-System-Multicast [14] and Spines [3] also
route through an application router to support overlay multicast
without infrastructure support.

Other work has looked into operating system support for
wireless ad-hoc routing protocols. Chakeres and Belding
showed in [9] an in-kernel design and implementation of the
ad-hoc AODV protocol using Netfilter modules, and showed
performance improvement compared to user-level ad-hoc pro-
tocols. Kawadia et al. [16] proposed a complete architecture
to support ad-hoc protocols in-kernel and a generic ad-hoc
support library for user-level programs to control different ad-
hoc protocols.

SMesh [4] recently showed how overlay multicast can be
used in wireless mesh networks to provide fast handoff to
unmodified 802.11 clients that connect transparently using
DHCP. SMesh allows multiple access points to service the
client during handoff, as it works in ad-hoc mode. In SMesh,
packets sent by the mobile client are diverted from the kernel
to the Spines user-level overlay router. Multicast trees are
calculated in a way similar to that of MOSPF [17]. SMesh
encapsulates client packets and sends them through the overlay
network to the access points serving the destination. Once the
packets are received by the destination’s access points, SMesh
strips the overlay headers and forwards the original packet to
the mobile client using a raw socket.

We used the SMesh wireless mesh system as a testbed to
implement and evaluate the benefits and drawbacks of the
approach presented in this paper.

III. OS SUPPORT FOR REDUNDANT MULTIPATH ROUTING

User-level overlay routing allows users to implement any
protocol without requiring any special support from the kernel.
The SMesh system uses this approach to implement redundant
multipath, essential for achieving a seamless handoff. While
very convenient, routing the entire traffic through user space
becomes problematic for low-cost wireless routers which have
limited processing power. It is widely known that forwarding
packets through user space results in higher CPU utilization
when compared to kernel space. The overhead can be at-
tributed to two primary factors: memory copies and context
switches. Each routing node must copy the packets from kernel

space to user space in order to determine the next hop. After a
routing decision is made, the packet must be returned to kernel
space where it is sent on the network. That is, the user-kernel
boundary must be crossed a minimum of two times per hop.

We describe next a mechanism that achieves efficient re-
dundant multipath routing in kernel space. The idea behind it
is simple: each node maintains multiple kernel routing tables,
one for each node in the mesh network, with route entries
set according to the multicast trees determined by our routing
protocol.

A. Architecture

In wireless mesh networks, it is possible for packets to
start flowing in the mesh from different sources. Several
Internet gateways may coexist in multi-homed wireless mesh
networks [5], any of which may need to forward packets to
the client. Also, since clients may communicate with other
clients in the mesh network, virtually every access point is
capable of being the source of packets in the mesh. To provide
optimal redundant multipath routing in these networks, each
node must consider the mesh source and the destination of
each packet in order to determine the appropriate forwarding
rule for that packet. Inside the mesh network, this can be
viewed as a multicast routing problem (multi-source multi-
destination multicast routing)1. Figure 1 shows how packets
are forwarded to the mobile client from two different sources
(node 1 and node 2)2. Note that node 5 must forward the
packets differently depending on the source of the packet.

Based on the description above, it is clear that a node must
decide what are the next hops for a packet based on the mesh
entry-point as well as the destination address of the packet.
However, the entry-point cannot be determined by just looking
at the packet destined to the client (the source address in
the IP header is not the address of a mesh entry-point, but
the actual address of the sender, which can be another mesh

1Tunneling the unicast packet in an IP-multicast tunnel is not a viable
solution as it suffers from lower reliability due to the lack of 802.11 link-
layer retransmissions. An alternative is to use IP-multicast tunnels, with an
additional unicast tunnel on each hop, but this approach incurs additional
space in the packet as well as processing overhead on each node.

2Note that these mesh nodes are not the actual sources. Rather, they are the
nodes that first received the packet in the mesh network, either from Internet
or from clients connected to them.

Implementation

 Encode entry
node in the

packet’s
IP header.

0 7 8 15 16 23 24 31

Version IHL TOS Total length

Identification (IPID) Flags Fragment offset

TTL Protocol Header checksum

Source IP

Destination IP

Options and padding

 Encode entry
node in the

packet’s
IP header.

0 7 8 15 16 23 24 31

Version IHL TOS Total length

Identification (IPID) Flags Fragment offset

TTL Protocol Header checksum

Source IP

Destination IP

Options and padding

 Encode entry
node in the

packet’s
IP header.

0 7 8 15 16 23 24 31

Version IHL TOS Total length

Identification (IPID) Flags Fragment offset

TTL Protocol Header checksum

Source IP

Destination IP

Options and padding

Use
policy routing

 and define
multiple routing

tables.

iptables -A PREROUTING -t mangle
-m u32 --u32 "2&0xFFFF=35"
-j MARK --set-mark 35

ip rule add fwmark 35 table 35

Use
MULTIHOP

Netfilter
module.

ip route add 10.233.59.169/32 table 35
 nexthop via 10.0.11.32 dev eth1
 nexthop via 10.0.11.33 dev eth1

CONFIG_IP_ROUTE_MULTIPATH

MULTIHOP

client or an Internet address). One solution to keep track of
the entry-point is to tunnel each packet from the entry-point
in the mesh to the mobile client. However, we need to instruct
the kernel to remove the tunnel in the last hop, right before
sending the packet to the client, which requires new kernel
functionality. Otherwise, the mobile client may discard these
packets. Another less obvious solution is to encode the mesh
entry-point in some of the existing space in the IP header
of the packet. Specifically, we can encode the IP address
of the entry-point into the identification field from the IP
header (also referred to as IPID). This is a 16-bit field used
to identify the fragments of the IP datagrams. Together with
the offset field, it is used by the IP layer to reassemble the
fragmented datagrams. As the packet travels in the network,
the intermediate routers must leave the IPID field unchanged.
To make a distinction between the original source (entry-point
in the mesh) and the rest of the nodes (routers) along the path,
we use a bit from type of service (TOS) field, specifically, the
cost bit. This approach benefits from no overhead in the mesh,
in terms of packet size, and from the fact that no modification
to the packet is necessary except at the entry-point of the mesh.

Even if very convenient, modifying the IPID of the packets
may create problems in the case of fragmented traffic. How-
ever, current studies show that IP packet fragmentation is not
commonly used today, and it amounts to between 1 and 2%
[8] of the overall traffic. While advocating for or against the
use of fragmentation [11] is outside the scope of this paper,
we choose to ignore the mesh entry-point when the packet
is fragmented, and forward it through a single path. Other
solutions to encode both the fragmentation and the mesh entry-
point are possible. However, considering the small amount of
the fragmented traffic, we believe this is a practical way for
our system to support it.

Our approach to routing packets in the kernel is as follows:
We first define a routing table in the kernel for each access
point in the mesh, i.e., for each possible mesh entry-point. In
each table, we add a route entry for each possible destination,
i.e., for each client (Figure 2). This entry may include several
next-hops, depending on the multicast trees determined by our
routing daemon. Then, we instruct the kernel to encode in each
packet the mesh entry-point when the packet is first seen in the
mesh network. Each node looks for this information at each
incoming packet to select what routing table to use. Then the
kernel forwards the packet according to the entry that has the
client address as the destination. For the example presented in
Figure 1, router 5 will use different forwarding tables if the
packets come from source 1 or source 2. In addition, to route
packets from the clients to the Internet, each node sets in its
main routing table the route to the closest Internet gateway.

B. Implementation

There are several challenges in implementing such an ar-
chitecture with the current services provided by the Linux
kernel networking stack. Essentially, we need to be able to
forward packets simultaneously on multiple paths to the same

Fig. 3. Implementation in Linux.

destination. Fortunately3, since version 2.2, the Linux kernel
supports defining multiple routing tables and permits policy
routing (a.k.a. rule based routing), which allows selecting dif-
ferent routing tables based on criteria other than the destination
address. In our case, each mesh node maintains a routing
table for each entry-point in the network, and includes in each
routing table an entry for each multicast group. That is, one
routing table corresponds to all multicast trees that have that
node as a source.

To alter the IPID field of the IP header, we wrote a simple
Netfilter kernel module. The selection itself of which routing
table to use, given the IP encoded in IPID, is done with
policy routing using fwmark, a mark carried by the kernel
as the packet travels through the kernel stack. Note that the
Netfilter rules required to alter IPID field and to set fwmark
are added/deleted at run-time since all possible entry-points
are not known in advance.

Normally, a routing table specifies a single forwarding
action to be taken in a deterministic manner for a given
packet. The CONFIG_IP_ROUTE_MULTIPATH option in the kernel
configuration permits specifying several alternative paths for a
destination. If no weight if given, the kernel considers all these
paths to be of equal cost and chooses in a non-deterministic
way which one to use when a packet arrives. Instead, we would
like to send the packet to multiple nodes simultaneously, if the
multicast tree indicates that. Therefore, we wrote a Netfilter
target module, called MULTIHOP, which sends a copy of the
packet to each next-hop found in the routing rule for a given
destination. In order to use this module, one needs to recompile
the kernel to export a function required to access the routing
table (fib lookup). Other than this, no changes are required in
the kernel. The module is available for download from our
website.

Figure 3 shows the path of a packet through the Linux
kernel and the places where it interacts with our scheme.
Immediately after the packet gets in, the entry-point of the
mesh must change the IPID field and set the TOS bit. Both the
entry-point and any intermediate router set the fwmark when
processing a packet for routing4. We use the NF_IP_PRE_ROUTING

Netfilter hook to do these modifications. The packet is then
passed back to the kernel networking stack, where it goes

3One of our goals is also to do as little changes as possible to the kernel,
if any at all.

4fwmark is an internal mark in the kernel’s packet data structure, and does
not involve changing the packet as in the case of IPID and TOS.

5

5

IPID: 5
TOS

5

IPID: 5
TOS

IPID: 5
TOS

5

IPID: 5
TOS

IPID: 5
TOS

5

IPID: 5
TOS

IPID: 5
TOS

5

5

Evaluation

1

2

3

One router

5 nodes
wireless

“line” setup

17 nodes
wireless
testbed

Rate 24 Mbps

Transmission power 50 mW

Retransmission limit 7

VoIP stream 64 Kbps

We route up to 50 duplex VoIP streams
before the CPU is saturated.

Overlay 4 streams 512 Kbps

Kernel 50 streams 6.4 Mbps

Native kernel routing 60 streams 7.6 Mbps

1

 0

 0.2

 0.4

 0.6

 0.8

 1

7064605550403216842

70004000 60005000400032001600800400

C
P

U
 L

o
a

d

of VoIP streams (each direction)

Pkts/s (sent + received)

Overlay
Kernel

Kernel without Multipath

 0

 20

 40

 60

 80

 100

7064605550403216842

70004000 60005000400032001600800400

L
o

s
s
 r

a
te

 (
%

)

of VoIP streams (each direction)

Pkts/s (sent + received)

Overlay
Kernel

Kernel without Multipath

0

1.1

2.2

3.3

4.4

5.5

6.6

7.7

8.8

9.9

11.0

1 hop 2 hops 3 hops 4 hops 5 hops

10

5

3
3

2

2 2 2 2 2

TCP Throughput (Mbps)

Overlay Kernel

With one wireless
hop, we get 10 Mbps

in a “line” setup.

2

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50 100 150 200 250 300

28
5 hops
26
4 hops
25
3 hops
24
2 hops
36
33
32
1 hop
31

T
hr

ou
gh

pu
t (

M
bp

s)

R
ou

te
r

ID

Time (s)

Fig. 8. TCP throughput: Overlay (moving).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20 40 60 80 100 120 140 160

28
5 hops
26
4 hops
25
3 hops
24
2 hops
36
33
32
1 hop
31

T
hr

ou
gh

pu
t (

M
bp

s)

R
ou

te
r

ID

Time (s)

Fig. 9. TCP throughput: Kernel (moving).

streams between the client and the Internet. Each (one-way)
stream has a rate of 64 Kbps. We monitored the average CPU
load (Figure 4) and the loss rate (Figure 5). The top x-axis
shows the corresponding number of packets/sec.

To understand better the overhead of our kernel approach,
we included an additional scenario: kernel routing without
the overhead of Netfilter rules required by our scheme. We
can see that with the overlay implementation, the CPU starts
to be saturated at 400 pkts/s (4 full-duplex VOIP streams,
or 512 Kbps), in our kernel implementation at 5,000 pkts/s
(50 streams or aprox 6.4 Mbps) while in kernel “without re-
dundant multipath” implementation at 6,000 pkts/s (60 streams
or aprox 7.6 Mbps). In each of these three scenarios, after a
while, the loss rate starts to be non-zero: less than 8 streams
(1 Mbps) for overlay, 51 streams (6.5 Mbps) for kernel and
64 streams (8 Mbps) for kernel without our additions.

B. Overlay vs Kernel TCP throughput and RTT test

This experiment evaluates the maximum throughput that can
be achieved in a multi-hop wireless network when forwarding
through user and kernel space with our modifications. We
connected 5 Linksys WRT54G routers in a simple “line”
topology, and measured the TCP throughput while sending
traffic from Internet to the client. Note that this continues to
be a very controlled test. We only use one client, and we do not
use background traffic to influence our results, as our goal is to
obtain the throughput upper bound. We performed tests with
the client placed 1, 2, 3, 4 and 5 hops away from the Internet
gateway. The throughput results are presented in Figure 6. We
also measured the round trip time (RTT) for both, overlay and
kernel routing, with and without background traffic (Figure
7). TCP throughput for 1 hop improved from a CPU-limited
amount of 2.1 Mbps to a bandwidth limited amount of about
10 Mbps in our setup. The round-trip latency from overlay is
more than 3 times the one from kernel for 1 hop, and even at
4 hops it is much above the kernel implementation.

C. Overlay vs Kernel in the deployed testbed:

1) TCP throughput: Figures 8 and 9 present the TCP
throughput achieved over time in both overlay and kernel

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
er

ce
nt

ag
e

of
 p

ac
ke

ts

Latency (milliseconds)

Overlay
Kernel

Fig. 10. Packet latency CDF.

modes while moving throughout our 17 node wireless mesh
network. Note that, as the two experiments were done sequen-
tially to test the maximum achievable throughput, the sequence
of handoffs could not be replicated between the two runs, even
though the mobility pattern was similar. The mesh network
opportunistically associates the mobile device to access points
depending of current conditions. In order to see how far we
are from the Internet gateway, we plot with a dotted line the
access point that currently services the client. The horizontal
lines mark when the number of hops increases by one. To
simplify the graphs, we included only the routers that were
involved in handling the client. With the overlay routing, the
throughput is just above 2 Mbps if the client is 1 or 2 hops
away from the Internet gateway (routers 31 and 32, 33 and 36).
This is consistent with the throughput reported in the previous
test. As the number of hops increases, the throughput drops to
1 Mbps and even lower. In the kernel routing, the throughput
was about 8.5 Mbps for 1 hop access points, 4.3 Mbps for 2
hops and it drops to 1 Mbps when the client is 6 hops away
from the gateway (router 28).

2) UDP latency: We now compare the improvement of
packets latencies when routing in overlay and in kernel
modes. We use a full-duplex UDP traffic, consisting of 160-

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50 100 150 200 250 300

28
5 hops
26
4 hops
25
3 hops
24
2 hops
36
33
32
1 hop
31

T
hr

ou
gh

pu
t (

M
bp

s)

R
ou

te
r

ID

Time (s)

Fig. 8. TCP throughput: Overlay (moving).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20 40 60 80 100 120 140 160

28
5 hops
26
4 hops
25
3 hops
24
2 hops
36
33
32
1 hop
31

T
hr

ou
gh

pu
t (

M
bp

s)

R
ou

te
r

ID

Time (s)

Fig. 9. TCP throughput: Kernel (moving).

streams between the client and the Internet. Each (one-way)
stream has a rate of 64 Kbps. We monitored the average CPU
load (Figure 4) and the loss rate (Figure 5). The top x-axis
shows the corresponding number of packets/sec.

To understand better the overhead of our kernel approach,
we included an additional scenario: kernel routing without
the overhead of Netfilter rules required by our scheme. We
can see that with the overlay implementation, the CPU starts
to be saturated at 400 pkts/s (4 full-duplex VOIP streams,
or 512 Kbps), in our kernel implementation at 5,000 pkts/s
(50 streams or aprox 6.4 Mbps) while in kernel “without re-
dundant multipath” implementation at 6,000 pkts/s (60 streams
or aprox 7.6 Mbps). In each of these three scenarios, after a
while, the loss rate starts to be non-zero: less than 8 streams
(1 Mbps) for overlay, 51 streams (6.5 Mbps) for kernel and
64 streams (8 Mbps) for kernel without our additions.

B. Overlay vs Kernel TCP throughput and RTT test

This experiment evaluates the maximum throughput that can
be achieved in a multi-hop wireless network when forwarding
through user and kernel space with our modifications. We
connected 5 Linksys WRT54G routers in a simple “line”
topology, and measured the TCP throughput while sending
traffic from Internet to the client. Note that this continues to
be a very controlled test. We only use one client, and we do not
use background traffic to influence our results, as our goal is to
obtain the throughput upper bound. We performed tests with
the client placed 1, 2, 3, 4 and 5 hops away from the Internet
gateway. The throughput results are presented in Figure 6. We
also measured the round trip time (RTT) for both, overlay and
kernel routing, with and without background traffic (Figure
7). TCP throughput for 1 hop improved from a CPU-limited
amount of 2.1 Mbps to a bandwidth limited amount of about
10 Mbps in our setup. The round-trip latency from overlay is
more than 3 times the one from kernel for 1 hop, and even at
4 hops it is much above the kernel implementation.

C. Overlay vs Kernel in the deployed testbed:

1) TCP throughput: Figures 8 and 9 present the TCP
throughput achieved over time in both overlay and kernel

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
er

ce
nt

ag
e

of
 p

ac
ke

ts

Latency (milliseconds)

Overlay
Kernel

Fig. 10. Packet latency CDF.

modes while moving throughout our 17 node wireless mesh
network. Note that, as the two experiments were done sequen-
tially to test the maximum achievable throughput, the sequence
of handoffs could not be replicated between the two runs, even
though the mobility pattern was similar. The mesh network
opportunistically associates the mobile device to access points
depending of current conditions. In order to see how far we
are from the Internet gateway, we plot with a dotted line the
access point that currently services the client. The horizontal
lines mark when the number of hops increases by one. To
simplify the graphs, we included only the routers that were
involved in handling the client. With the overlay routing, the
throughput is just above 2 Mbps if the client is 1 or 2 hops
away from the Internet gateway (routers 31 and 32, 33 and 36).
This is consistent with the throughput reported in the previous
test. As the number of hops increases, the throughput drops to
1 Mbps and even lower. In the kernel routing, the throughput
was about 8.5 Mbps for 1 hop access points, 4.3 Mbps for 2
hops and it drops to 1 Mbps when the client is 6 hops away
from the gateway (router 28).

2) UDP latency: We now compare the improvement of
packets latencies when routing in overlay and in kernel
modes. We use a full-duplex UDP traffic, consisting of 160-

3

Results are close to the “line” topology
(8.5 Mbps for one hop).

Kernel multipathOverlay

Redundant multipath routing is important in WMN.

We can support it with minimal changes in Linux kernel.

SMesh is available as open-source at www.smesh.org.

Thanks

Questions

