On Redundant Multipath Operating System Support for Wireless Mesh Networks

Presented by Raluca Musaloiu-E. Johns Hopkins University

Yair Claudiu Michael That's Nilo Amir Danilov Kaplan Me Rivera

SMesh story

Redundant multipath routing is an essential service for increasing reliability in wireless mesh networks.

Redundant multipath is not natively **supported** by current operating systems.

User space Kernel space

A cost effective wireless mesh deployment requires **low-cost** mesh nodes.

TCP Throughput (Mbps)

We present a **minimally invasive** mechanism to support redundant multipath routing in kernel-space.

User space Control

Kernel space

Data routing

We present a **minimally invasive** mechanism to support redundant multipath routing in kernel-space.

User space

Control

Kernel space

Data routing

Module for multipath

TCP Throughput (Mbps)

Overlay

Redundat Multipath

Architecture

To route, consider entry point, in addition to destination address.

We use multiple routing tables.

Each route may have multiple next-hops.

Node 5

Node I			
Destination	Next-hops		
client l	6, 7		
client 2	3		
•••	•••		

Implementation

Encode entry node in the packet's IP header.

0	7	8 15	16	23 24 31	
Version	Ï	TOS	Total length		
Identificat		ion (IPID)	Flags Fragment offset		
T	ΓL	Protocol	Header checksum		
Source IP					
Destination IP					
Options and padding					

Encode entry node in the packet's IP header.

Encode entry node in the packet's IP header.

Dicy routing and define multiple routing tables.

iptables -A PREROUTING -t mangle -m u32 --u32 "2&0xFFFF=35" -j MARK --set-mark 35

ip rule add fwmark 35 table 35

ip route add 10.233.59.169/32 table 35

Use
MULTIHOP
Netfilter
module.

MULTIHOP

CONFIG_IP_ROUTE_MULTIPATH

nexthop via 10.0.11.32 dev eth l

nexthop via 10.0.11.33 dev eth1

entry point: set IPID

set TOS

Evaluation

One router

5 nodes wireless "line" setup

17 nodeswirelesstestbed

Rate 24 Mbps

Transmission power 50 mW

Retransmission limit 7

VoIP stream 64 Kbps

We route up to **50** duplex VoIP streams before the CPU is saturated.

Overlay	4 streams	512 Kbps
Kernel	50 streams	6.4 Mbps
Native kernel routing	60 streams	7.6 Mbps

With one wireless hop, we get IO Mbps in a "line" setup.

Overlay

Kernel

Results are close to the "line" topology (8.5 Mbps for one hop).

Redundant multipath routing is important in WMN.

We can support it with minimal changes in Linux kernel.

SMesh is available as open-source at www.smesh.org.

