Fast Handoff for Seamless Wireless Mesh Networks

Yair Amir, Claudiu Danilov, Michael Hilsdale, Raluca Musaloiu-Elefteri, Nilo Rivera

Distributed Systems and Networks Lab Johns Hopkins University

MobiSys 2006

Motivation

- Over 200 million 802.11 chips sold
- Wireless becoming the Norm for Internet connectivity
- VoIP becoming popular
- Want a wireless infrastructure that allows unmodified clients to connect and roam freely with real-time fast handoff

Rethinking the Problem

- How will clients connect to the wireless infrastructure?
 - 802.11 BSS (Infrastructure) or IBSS (Ad-Hoc) Mode
- How should we route to and from the mobile client?
 - Should clients be part of the Routing Topology
 - What is the natural way of routing to the Internet Gateway
- How can we achieve fast handoff?
 - Does 802.11 handoff have to be Hard and Forward
 - Can the wireless infrastructure (not the mobile client) control the handoff
 - Can we reroute packets fast enough.

SMesh

Related Work

Handoff on Wireless Networks

- Handoff in Cellular Wireless Networks [Seshan, Balakrishnan and Katz, Kluwer Journal on Wireless Personal Communications, 1996]
- Fast and Scalable Handoff [Caceres and Padmanabhan, MOBICOM, 1996]
- An Empirical Analysis of 802.11 Handoff [Mishra, Shin and Arbaugh, SIGCOMM, 2003]
- SyncScan [Ramani and Savage, INFOCOM, 2005]

Wireless Mesh Networks

Metricom Ricochet, MIT Roofnet, Microsoft MCL,
 Rice TAPS, UCSB MeshNet, ...

Outline

- Architecture
 - Overlay Communication Infrastructure
 - Client Seamless Access
 - Sending and Receiving packets

- Fast Handoff
 - Client Quality Metric
 - Client Mobility
- Experimental Results

Architecture Overview

- Unmodified Mobile client
 - Connectivity
- Interface with Mobile Client
 - Handle client connectivity
 - Handoff Logic
 - Data Packet Proxy to handle client packets
- Communication Infrastructure
 - Topology Management
 - Multi-Hop Communication (Routing)
- Medium (Wireless Mesh and the Internet)

SMesh Architecture

SMesh Architecture

Generic Overlay Network

Spines Messaging System

[DSN 2003], [NOSSDAV 2005]

- Hello Protocol
- Routing Metrics
- Multicast / Anycast
- Transparent API

Client Seamless Access

Use Standard DHCP Protocol

- Ensure client always gets the same IP address
 - Assign IP based on MAC address
- Make client route all packets through a Virtual Default Gateway
 - Default Internet Gateway: 10.20.30.40
 - Netmask: 255.255.254

Routing Groups

Outline

- Architecture
 - Overlay Communication Infrastructure
 - Client Seamless Access
 - Sending and Receiving packets
- Fast Handoff
 - Client Quality Metric
 - Client Mobility
- Experimental Results

Client Quality Metric

- Make client Broadcast a DHCP request every 2 seconds
 - DHCP T1 and T2 Timers
- Measure Loss Rate on Broadcast DHCP Packets
 - Broadcast Packets are Not Retransmitted

Client Quality Metric

```
M_{NEW} = M_{OLD} * Df + Const * Received * (1 - Df)  0 < Df < 1
```

M = Link Quality Measure

Df = Decay Factor

Received = DHCP Packets Received on Window

Const = 30 (Granularity + Integer Mapping)

Fast Lossless Handoff

- Nearby Access Points share metric on Client Control Group periodically
- Best of them joins Client Data Group, and Unicast Gratuitous ARP
- We need to guarantee that, at all times, there is at least one member in the Data Group
 - When not best and in Data Group, send Leave Requests
 - Leave Request ACK can only be sent by members of the DATA
 Group not currently sending a Leave Request.
 - Disagreement is allowed
 - A Tie between members resolved by IP address

Outline

- Architecture
 - Overlay Communication Infrastructure
 - Client Seamless Access
 - Sending and Receiving packets
- Fast Handoff
 - Client Quality Metric
 - Client Mobility
- Experimental Results

SMesh Wireless Testbed (Dec 9 2005)

SMesh Testbed

<u>Test</u>

Full Duplex VoIP
Internet <==> Client

Each Stream

G.711 64 Kbps 160 bytes / 20 ms

Stationary Client: Latency

Internet -> Mobile Client

Lost: 2; Duplicate: 172; 100 3H-03 90 3H-34 80 2H-06 70 2H-35 Number of hops - Box 60 1H-31 Latency (ms) 50 1H-23 40 30 20 10 2000 4000 6000 8000 10000 12000 14000 SEQ number packet latency (left axis) currently connected AP (right axis)

Mobile Client -> Internet

Packets delayed over 100ms 9 packets

Packets delayed over 100ms 16 packets

Moving Client: Latency

Internet -> Mobile Client

Lost: 12; Duplicate: 508; 100 3H-03 90 3H-34 80 2H-06 70 2H-35 60 Latency (ms) 1H-31 1H-26 50 1H-23 40 30 20 10 2000 4000 6000 8000 10000 12000 14000 SEQ number packet latency (left axis) currently connected AP (right axis)

Mobile Client -> Internet

Packets delayed over 100ms 55 packets

Packets delayed over 100ms 56 packets

Moving Client: Duplicates

Internet -> Mobile Client

Moving Client: Handoff Zoom

Internet -> Mobile Client

Conclusion

- Seamless Wireless Mesh Network with Fast Handoff
- Uses only common Internet and 802.11 protocols
- System Demonstrated on Practical Deployment

SMESH

www.smesh.org

Moving Client: Loss

Internet -> Mobile Client

Overhead

Internet -> Mobile Client

Failover

Mobile Client -> Internet

